A Ground Fault Location Technique for Wound Field Poles of Synchronous Machines Through Frequency Response Analysis

  1. Guerrero, José Manuel 3
  2. Mahtani, Kumar 1
  3. Martín, Carolina M. 1
  4. Eguren, Imanol 2
  5. Platero, Carlos A. 1
  1. 1 Automatics, Electrical and Electronical Engineering and Industrial Informatics Department, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Madrid, Spain
  2. 2 Electronics and Computing Department, Mondragon Unibertsitatea, Arrasate-Mondragon, Spain
  3. 3 Electric Engineering Department, Universidad del País Vasco - Euskal Herriko Unibertsitatea (UPV-EHU), Bilbao, Spain
Revista:
IEEE Journal of Emerging and Selected Topics in Industrial Electronics

ISSN: 2687-9735 2687-9743

Año de publicación: 2024

Volumen: 5

Número: 4

Páginas: 1435-1446

Tipo: Artículo

DOI: 10.1109/JESTIE.2023.3339436 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: IEEE Journal of Emerging and Selected Topics in Industrial Electronics

Resumen

Although frequency response analysis (FRA) is a renowned diagnostic technique in the field of power transformers, it has not gained much traction yet in the domain of rotating electrical machinery. This article presents a novel diagnostics technique that applies FRA to the detection of ground faults in the wound field poles of synchronous machines. To this end, numerous experimental tests were carried out on a testbench comprising a pole of a 40-MVA hydro-generator. The data obtained in the experimental tests was used to build a novel surface fitting-based methodology that estimates the fault position, providing the faulty turn, and that estimates the fault severity, providing the fault resistance. The outputs of the proposed fault location method are valuable to reduce the corrective maintenance times, with the aim of ensuring a proper operation of the power system at the same time that costs are optimized.

Referencias bibliográficas

  • 10.1109/JPROC.2014.2378692
  • 10.1109/FSKD.2009.108
  • 10.1109/HIS.2011.6122178
  • 10.35833/MPCE.2018.000347
  • 10.1109/JESTIE.2023.3258345
  • 10.1109/MEPCON.2017.8301235
  • 10.1007/s40031-016-0237-5
  • Stone, (2004), Electrical Insulation for Rotating Machines. Design, Evaluation, Aging, Testing, and Repair, pp. 235
  • Das, (2018), Power System Protective Relaying, pp. 419
  • 10.1201/9781420030488
  • 10.1109/ieeestd.1996.81046
  • 10.1002/9780470382769
  • 10.1109/TIA.2019.2949982
  • 10.1109/TEC.2010.2095501
  • 10.1109/SDEMPED51010.2021.9605531
  • Guerrero, (2022)
  • 10.1109/TMAG.2017.2743986
  • 10.1109/TIE.2017.2752135
  • 10.1109/ACCESS.2019.2932497
  • 10.1109/ieeestd.2013.6475950
  • 10.1109/TPWRD.2019.2909144
  • 10.1109/ACCESS.2021.3049192
  • 10.1007/978-3-030-31676-1_70
  • 10.1109/IECON.2016.7793565
  • 10.1109/DEMPED.2013.6645714
  • 10.3390/app11072923
  • 10.1109/TPWRD.2021.3067863
  • 10.1109/TIA.2021.3131425
  • 10.1109/TIA.2021.3122412
  • 10.1109/TEC.2011.2106214
  • 10.1016/j.ijepes.2015.05.005
  • 10.1007/3-540-47977-5_2
  • Moler, (2019)