Modelo predictivo de control en fundiciones de alta precisiónun nuevo enfoque para la fase de predicción

  1. J. Nieves 1
  2. I. Santos 1
  3. P.G. Bringas 1
  1. 1 Universidad de Deusto
    info

    Universidad de Deusto

    Bilbao, España

    ROR https://ror.org/00ne6sr39

Journal:
Revista de metalurgia

ISSN: 0034-8570

Year of publication: 2011

Volume: 47

Issue: 4

Pages: 341-354

Type: Article

DOI: 10.3989/REVMETALM.1059 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista de metalurgia

Abstract

A Model Predictive Control (MPC) is a system which allows us to control a production plant. Thanks to this type of system is possible to make a production that comes close to �zero defects�. In order to achieve its main goal, this kind of systems consists of several phases. One of the most important is the phase that predicts the situation in represented by machine-learning models. which the plant is going to be in a given time. Currently, the majority of the research in this field are related to linear MPC, although the process, which the model tries to represent, may not be. Thus, this paper presents several experiments that proof that the forecast phase, usually represented by a single mathematical function, can be

Bibliographic References

  • [1] A. Lazaro, I. Serrano, J. P. Oria, y C. de Miguel. Proc. AMC. Coimbra, Portugal, IEEE Standards Office, Cambridge, MA, EE.UU., pp. 653-658.
  • [2] P. Zhang, Z. Xu, y F. Du, Proc. ICNC, IEEE Computer Society, Los Alamitos, CA, EE.UU., 2008, pp. 545-548.
  • [3] M. Perzyk y A. Kochanzski, P. I. Mech. Eng. B-J. Eng. 217 (2003) 1.279-1.284.
  • [4] H. Bhadeshia, ISIJ Int. 39 (1999) 966-1.000.
  • [5] R. Gonzaga-Cinco y J. Fernández-Carrasquilla, Rev. Metal. Madrid 42 (2006) 91-102.
  • [6] C. W. Lung y N. H. March, Mechanical Properties of Metals: Atomistic and Fractal Continuum Approaches, Ed. World Scientific Pub Co Inc, Singapur, 1999, pp. 43-110.
  • [7] M. Morari y J. H. Lee, Comput. Chem. En. 23 (1997) 667-682. http://dx.doi.org/10.1016/S0098-1354(98)00301-9
  • [8] S.J. Qin y T.A. Badgwell, Prog. Syst. C. 26 (2000) 369-392.
  • [9] S.J. Wright, Proc. CPC-5, vol. 93, Tahoe, J.C. Kantor, C.E. Garcia, y B. Carnahan (Eds.), American Institute of Chemical Engineers, Nueva York, EE.UU., 1997, pp. 147-155.
  • [10] M. Morari y J.H. Lee, Proc. CPC-4, 1991, Padre Island, Texas, EE.UU., Y. Arkun, y W. H. Ray (Eds.), Elsevier, Amsterdam, Holanda, 1991, pp. 419-444.
  • [11] K.R. Muske y J.B. Rawlings, AIChE. J. 2 (1993) 262-287. http://dx.doi.org/10.1002/aic.690390208
  • [12] B. Froisy. ISA T. 33 (1994) 235-243. http://dx.doi.org/10.1016/0019-0578(94)90095-7
  • [13] D. W. Clarke, C. Mohtadi y P. S. Tuffs, Automatica 2 (1987) 137-148. http://dx.doi.org/10.1016/0005-1098(87)90087-2
  • [14] R. Kohavi. Int. Joint Conf. Artif. (1995) 1.137- 1.143.
  • [15] G. F. Cooper y E. Herskovits, Proc. UAI, Los Angeles, B. D. D'Ambrosio, P. Smets, P. P. Bonissone (Eds.) Morgan Kaufman Publishers Inc., San Francisco, EE.UU. 1991, pp. 86-94.
  • [16] S. J. Russell y Norvig. Artificial Intelligence: A Modern Approach, Ed. Prentice Hall, Upper Saddle River, NJ, EE.UU., 2003, pp. 126-129.
  • [17] D. Geiger, M. Goldszmidt, G. Provan, P. Langley y P. Smyth, Mach. Learn. 2 (1997) 131-163.
  • [18] B. Üstün, W.J. Melssen y L.M.C. Buydens. Anal. Chim. Acta, 595 (2007) 299-309.
  • [19] L. Breiman. Mach. Learn. 45 (2001) 5-32. [20] P. Larrañaga, J. Sertucha, y R. Suárez, Rev. Metal. Madrid 42 (2006) 244-255.
  • [21] J. Sertucha, R. Suárez, J. Legazpi, y P. Gacetabeitia, Rev. Metal. Madrid 43 (2007) 188-195.
  • [22] T. Bayes, Philos. Trans. R. Soc. 53 (1763) 370-418. http://dx.doi.org/10.1098/rstl.1763.0053
  • [23] E. Castillo, J. M. Gutiérrez y A. S. Hadi, Expert Systems and Probabilistic Network Models. Ed. Springer, New York, EE.UU., 1996, pp. 69-534.
  • [24] J. Pearl, Handbook of brain theory and neural networks, M. Arbib (Ed), MIT Press, Cambridge, MA, EE.UU., pp. 149-153
  • [25] E. Fix y J. L. Hodges, Discriminatory analysis: Nonparametric discrimination: Small Sample performance, Technical Report Project 21-49- 004, Report Number 11, USAF School of Aviation Medicine, Randolf Field, Texas, EE.UU., 1952.
  • [26] C. M. Bishop, Neural Networks for Pattern Recognition, Ed. Oxford University Press, Oxford, UK, 1995, pp. 225-283.
  • [27] D. Michie y D. J. Spiegelhalter, Machine learning, neural and statistical classification, Ed. Ellis Horwood, Upper Saddle River, NJ, EE.UU., 1994, pp. 84-124.
  • [28] V. N. Vapnik, The nature of statistical learning theory, Ed. Springer, New York, EE.UU., 1995, pp. 156-167.
  • [29] T. Peng, W. Zuo y F. He, Knowl. Inf. Sys. 3 (2008) 281-301. http://dx.doi.org/10.1007/s10115-007-0107-1
  • [30] J. R. Quinlan, Mach. Learn. 1 (1986) 81-106.
  • [31] L. Breiman, Mach. Learn. 1 (2001) 5-32. http://dx.doi.org/10.1023/A:1010933404324
  • [32] S.R. Garner, Proc. de la New Zealand Computer Science Research Students Conference, Nueva Zelanda, 1995, pp. 57-64.
  • [33] Y. K. Penya, P. G. Bringas y A. Zabala, Proc. INDIN-6, Daejon, Corea, 2008, pp. 1.673-1.677.
  • [34] P. Spirtes, C. Glymour y R. Scheines, Causation, Prediction, and Search, Ed. MIT Press, Cambridge, EE.UU., 2001, pp. 73-156.
  • [35] U. B. Kjaerulff y A. L. Madsen, Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis. Information Science and Statistics, Ed. Springer, New York, EE.UU., 2008, pp. 241-245.