An attribute oriented induction based methodology to aid in predictive maintenanceanomaly detection, root cause analysis and remaining useful life

  1. MARTINEZ ANAKABE, JAVIER
unter der Leitung von:
  1. Urko Zurutuza Ortega Doktorvater
  2. Ekhi Zugasti Uriguen Co-Doktorvater

Universität der Verteidigung: Mondragon Unibertsitatea

Fecha de defensa: 26 von Februar von 2020

Gericht:
  1. Olatz Arbelaitz Gallego Präsident/in
  2. Carlos Cernuda García Sekretär
  3. Magda Ruiz Ordóñez Vocal
  4. Rosario María Basagoiti Astigarraga Vocal
  5. Urko Leturiondo Zubizarreta Vocal
Fachbereiche:
  1. 1EPS Sistemas embebidos y sistemas inteligentes para sistemas industriales

Art: Dissertation

Teseo: 639042 DIALNET lock_openTESEO editor

Zusammenfassung

El Mantenimiento Predictivo es la metodología de mantenimiento que mejor rendimiento aporta a las organizaciones industriales en cuestiones de tiempo, eficiencia del equipamiento, y rendimiento económico. Gracias a los recientes avances en tecnología, la captura de datos de proceso de máquinas y sensores ya no es un reto, y puede utilizarse para realizar complejos análisis que ayuden con el cumplimiento de los requerimientos de mantenimiento. Por otro lado, el conocimiento de expertos de dominio puede ser combinado con la información extraída de las máquinas para otorgar una mejor comprensión de los fenómenos ocurridos. Esta tesis propone una metodología que cumple con diferentes requerimientos establecidos para el Mantenimiento Predictivo. Estos son (i) la Detección de Anomalías (AD), el Análisis de la Causa-Raíz (RCA) y (iii) la estimación de la Vida Útil Remanente. Pueden encontrarse múltiples técnicas y algoritmos de aprendizaje automático en la literatura para llevar a cabo el cálculo de estos requerimientos. En esta tesis, el algoritmo Attribute Oriented Induction (AOI) ha sido seleccionado y adaptado a las necesidades que establece el Mantenimiento Predictivo. AOI tiene la capacidad de estimar el RCA, pero puede usarse, también, para el cálculo de la AD. Con el propósito de aplicar Mantenimiento Predictivo, se ha propuesto una variante del algoritmo, denominada Repetitive Weighted Attribute Oriented Induction (ReWAOI ). ReWAOI tiene la capacidad de combinar información extraída de la máquina y conocimiento de expertos de área para describir su comportamiento, y así, poder cumplir con los requerimientos del Mantenimiento Predictivo. Mediante el uso de ReWAOI, se puede obtener una función de cuantificación unidimensional, a partir de datos multidimensionales. Esta función está correlacionada con la evolución de la máquina en el tiempo, y por lo tanto, la estimación de AD y RUL puede ser realizada. Además, ReWAOI facilita la descripción de las causas-raíz de los fallos producidos. Las contribuciones propuestas en esta tesis han sido validadas en distintos escenarios, tanto en casos de uso industriales emulados como reales.