Optimizing Power Forecasting Models with Customized Features for Academic and Industrial Buildings

  1. Cabezuelo, David 1
  2. Lopez-Ramirez, Izar 1
  3. Urkizu, June 1
  4. Goikoetxea, Ander 1
  1. 1 Computer and Electronics Department, Mondragon University, 20500 Mondragon, Spain
Journal:
Smart Cities

ISSN: 2624-6511

Year of publication: 2024

Volume: 8

Issue: 1

Pages: 3

Type: Article

DOI: 10.3390/SMARTCITIES8010003 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Smart Cities

Funding information

Funders

  • ELKARTEK program supported by the Basque Government
    • KK2023/00042
  • BERDEA
    • KK-2023/00037

Bibliographic References

  • IEA (2023). Energy Efficiency, International Energy Agency. Technical Report.
  • Zhao, (2021), J. Build. Eng., 35, pp. 101962, 10.1016/j.jobe.2020.101962
  • Liu, (2020), J. Clean. Prod., 251, pp. 119693, 10.1016/j.jclepro.2019.119693
  • Wu, (2020), Energy Build., 224, pp. 110211, 10.1016/j.enbuild.2020.110211
  • Nematchoua, (2021), Renew. Sustain. Energy Rev., 135, pp. 110198, 10.1016/j.rser.2020.110198
  • Zhang, (2018), Inf. Fusion, 42, pp. 146, 10.1016/j.inffus.2017.10.006
  • Amasyali, (2018), Renew. Sustain. Energy Rev., 81, pp. 1192, 10.1016/j.rser.2017.04.095
  • Somu, (2020), Appl. Energy, 261, pp. 114131, 10.1016/j.apenergy.2019.114131
  • Bakar, (2015), Renew. Sustain. Energy Rev., 44, pp. 1, 10.1016/j.rser.2014.12.018
  • Bourdeau, (2019), Sustain. Cities Soc., 48, pp. 101533, 10.1016/j.scs.2019.101533
  • Wei, (2018), Renew. Sustain. Energy Rev., 82, pp. 1027, 10.1016/j.rser.2017.09.108
  • Ramokone, (2021), Sustain. Energy Technol. Assess., 45, pp. 101235
  • Eren, (2024), Renew. Sustain. Energy Rev., 189, pp. 114031, 10.1016/j.rser.2023.114031
  • Kapp, (2023), Renew. Sustain. Energy Rev., 172, pp. 113045, 10.1016/j.rser.2022.113045
  • Omatu, S., Mehmood, R., Sitek, P., Cicerone, S., and Rodríguez, S. (2023). Deep Learning for Short-Term Instant Energy Consumption Forecasting in the Manufacturing Sector. Distributed Computing and Artificial Intelligence, 19th International Conference, Springer.
  • El Aziz Ahmed, E.A., Ibrahim, R.A., and Abdelsalam, A.K. (2023, January 12–14). A Comparative Analysis for Machine Learning-based Short-Term Load Forecasting Techniques. Proceedings of the 2023 IEEE 6th International Electrical and Energy Conference (CIEEC), Hefei, China.
  • Ungureanu, S., Topa, V., and Cziker, A.C. (2021). Deep Learning for Short-Term Load Forecasting—Industrial Consumer Case Study. Appl. Sci., 11.
  • Gandelli, (2023), Forecasting, 5, pp. 390, 10.3390/forecast5020021
  • Baek, S.J., and Yoon, S.G. (2019, January 17–20). Short-Term Load Forecasting for Campus Building with Small-Scale Loads by Types Using Artificial Neural Network. Proceedings of the 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA.
  • Martini, (2024), J. Build. Eng., 97, pp. 110612, 10.1016/j.jobe.2024.110612
  • Ghoddusi, (2019), Energy Econ., 81, pp. 709, 10.1016/j.eneco.2019.05.006
  • Al-Saudi, K., Degeler, V., and Medema, M. (2021). Energy Consumption Patterns and Load Forecasting with Profiled CNN-LSTM Networks. Processes, 9.
  • Johnson, (2019), J. Big Data, 6, pp. 27, 10.1186/s40537-019-0192-5
  • Türkmen, A.C., Januschowski, T., Wang, Y., and Cemgil, A.T. (2021). Forecasting intermittent and sparse time series: A unified probabilistic framework via deep renewal processes. PLoS ONE, 16.
  • Adadi, (2021), J. Big Data, 8, pp. 24, 10.1186/s40537-021-00419-9
  • Alaka, (2022), J. Build. Eng., 45, pp. 103406, 10.1016/j.jobe.2021.103406
  • Zheng, G., Feng, Z., Jiang, M., Tan, L., and Wang, Z. (2023). Predicting the Energy Consumption of Commercial Buildings Based on Deep Forest Model and Its Interpretability. Buildings, 13.